
제 30회 영상처리 및 이해에 관한 워크샵 2018.2.7-2.9

Real-time Stereo Vision Framework for Mobile Device Using GPGPU

안드레 이반, 김태인, 박인규

인하대학교 정보통신공학과

andreivan13@gmail.com, sappho192@gmail.com, pik@inha.ac.kr

Abstract

This paper presents a fast stereo matching framework running on widely available mobile device using GPU. Our approach

consists of three main steps: pre-processing, stereo matching, and pre-processing where each step employs multiple

algorithms. This multiple approach enables us to analyze and choose the best approach for tradeoff between speed and

accuracy. Experimental results show that the system able to run in real-time yet generating a reasonable disparity map through

some optimization technique, quantitative evaluation is also performed to check the system accuracy.

1. Introduction

Stereo matching or stereo correspondences has been a

continuously explored topic in the computer vision field.

However, there are not many stereo matching works

focusing on mobile device due to computational limitation

on mobile device. Naturally stereo matching algorithm

consists of algorithm with high computation cost, coming

from number of loops involved while searching for

correspondences.

With general-purpose computing on graphics processing

units (GPGPU) we can overcome the limitation. While not

all algorithm can be implemented in GPU, stereo matching

algorithms are mostly suitable for GPU implementation.

Exploiting this we can solve the performance issue on a

resource constrained device (mobile). Even though GPGPU

can solve the computation problem, implementing the

algorithm on mobile GPU is not an easy feat, as it consists

of many constraints and limitation compared to desktop

environment. We utilize OpenCL library as the

parallelization library. OpenCL is a widely known

heterogenous and cross-platform parallel programming

library suitable for mobile device GPU.

Thus, we present a fast stereo matching system and

optimization methods for real-time processing with

reasonable disparity map on widely available mobile device.

The accuracy of proposed framework is evaluated using

dataset from [1].

2. Proposed method

The proposed framework consists of three main steps. At

the beginning gaussian and gradient filter is performed

alongside calibration and rectification on pre-processing

stage. For matching cost computation sum of absolute

difference (SAD) or adaptive support weight (ASW) [2] is

used. Note that cost aggregation is not included to reduce the

computation time. Final disparity map is obtained by

performing winner-take-all (WTA), the whole process is

considered as stereo matching stage. Finally weighted

median filter (WMF) [3] is performed to improve the

disparity map as post-processing stage. Whole system

pipeline is shown in Fig. 1. Each step is optimized and

described in the following subsections.

2.1 Pre-processing

First Gaussian filter is performed to remove existing

noise captured in the real-world environment. Note that we

use small σ to make sure the image did not become

ambiguous for stereo correspondence search yet enough to

remove some noise. Gradient filter is then performed to deal

with ambiguity from intensity difference between left and

right camera. Gradient filter can also deal with texture less

or homogenous region. Calibration and rectification is

needed since we are dealing with real stereo camera. Both

process is done at the same time to save computation time.

We also compare the gradient filter approach with

normalized cross correlation (NCC) matching in handling

different intensity view, we found that gradient filter able to

handle the intensity difference better and with less

computation time.

2.2 Stereo matching

Two approaches are considered for matching cost

computation: SAD, ASW. Problem in SAD mostly relies on

nested loops for image width, height, and disparity search

range, while the computation complexity for each loop is

quite low as only absolute difference is performed. ASW

also has the same problem but with more computation

complexity as it deals with exponential calculation. On GPU

implementation these nested loops can be omitted and

performed in parallel. SAD performs faster compared to

ASW but ASW produces better disparity map. Hence, SAD

is more suitable matching cost algorithm for real-time

system, even though our ASW implementation also run in

real-time. Computation time for each method is discussed

mailto:andreivan13@gmail.com

제 30회 영상처리 및 이해에 관한 워크샵 2018.2.7-2.9

on section 3. Cost volume filtering or WTA is performed to

find each pixel disparity value associated with its minimum

cost. Stereo matching part is the bottleneck of our proposed

system; therefore, we optimize those steps. More detailed

optimization method employed is discussed on section 2.4.

2.3 Post-processing

WMF is performed to further refine the estimated

disparity map. Unweighted median filter or just median

filter is known to remove salt and pepper noise which

commonly found in disparity map. In refining disparity map

just removing noise is not enough, we want to fill some

holes from error in matching cost computation. WMF is a

great approach in smoothing image while preserving edges

which is important in stereo matching. Drawback of WMF

is the computation times since its basically performing cost

aggregation on disparity image.

We implement WMF on GPU using bilateral filter as the

weight. Since WMF is not feasible for real-time

computation we employ WMF to achieve high accuracy

disparity map. Bilateral filter is used due to its simplicity in

implementing it on GPU and it preserves edges better than

guided or domain transform filter [3].

2.4 Optimization

Since we are dealing with stereo images number of

search in width and height doubles than normal, in GPU this

translates to amount of global work size. This related to the

amount of points in an array of work dimension that must be

executed. More work size means more pixel to work with,

this can be solved by stacking or computing both left and

right image parallelly. Since on pre-processing stage left and

right image is independent, this approach is efficient as we

can perform pre-processing on both stereo image in one go.

We also ignore boundary pixel to removes insufficient

computation and (IF) branching.

Utilizing efficient memory access by reducing the

amount of global memory access as much as possible. By

using local memory, we can reduce computation time as it

is known to be much faster than global memory access.

However, size of memory available inside GPU is limited.

Thus, we need to design the usage of this variable well.

Global memory access mostly happened when we try to

access pixel value of an image passed as global variable.

Store frequently accessed pixels in local memory to avoid

repeated global memory access.

It is important to find suitable local work size or thread

block size in GPGPU programming. To find the best size,

we evaluate the computational time for each candidate and

choose the fastest one empirically. Note that local work size

has the most affect in reducing computation time. We found

that 16x16 and 8x8x4 local work size for 2D and 3D global

work size respectively are the best for fastest computation

time. 2D global work size is for case involving width and

height only while 3D includes disparity range. The whole

optimization approach improves our computation time from

7.5 FPS to 10.44 FPS.

3. Experimental result

The proposed framework is implemented on Samsung

S7 with Octa-core (4x2.3 GHz & 4x1.6 GHz) CPU and

Mali-T880 MP12 GPU on Exynos 8890 Octa chipset. We

use OpenCL ver 1.2. and code is implemented in Android

Studio. Fig. 2 shows the result of our framework using real

stereo image captured from USB stereo camera and image

from [1]. We suggest gradient filter, SAD, and WTA for

real-time processing purposes and gradient filter, ASW,

WTA, WMF for high accuracy purposes (3.54% bad pixel).

Table 1 shows the computational time comparison

between CPU implementation and GPU implementation.

Even with considering the OpenCL memory allocation

between GPU and host, it still performs faster than CPU

implementation.

Fig. 1. System pipeline

Fig. 2. Results of proposed framework

제 30회 영상처리 및 이해에 관한 워크샵 2018.2.7-2.9

 CPU GPU

Host→GPU 0 0.000525

Gradient filter 0.14684 0.016442

Rectification 0.09854 0.003358

Stereo matching 5.43070 0.085134

GPU→Host 0 0.004366

Total time 5.67608 0.109825

4. Conclusion

We introduced a stereo matching framework on mobile

GPU to achieve real-time computation yet producing

reasonable disparity map. Our framework works with real

stereo camera and stereo image. GPU optimization were

done throughout the whole framework. Experimental results

show that the proposed framework can obtain faster speed

and produces dense disparity map. Our framework can also

be used for multiple purposes for speed or accuracy.

Acknowledgement

이연구는정보통신기술진흥센터(IITP)와과학기술정보

통신부(MSIT)의지원으로수행되었습니다(2017-0-

00142).

References

[1] D. Scharstein and R. Szeliski, “A taxonomy and

evaluation of dense two-frame stereo correspondence

algorithms,” Int’l J. Computer Vision, 2002.

[2] K. J. Yoon and I. S. Kweon, “Adaptive support-weight

approach for correspondence search,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 2006.

[3] Z. Ma, K. He, Y. Wei, J. Sun, E. Wu, “Constant Time

Weighted Median Filtering for Stereo Matching and

Beyond,” IEEE International Conference on

Computer Vision, 2013.

Table 1. Comparison of computational time in seconds

