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Abstract—As the information technology plays an important
role in the smart factories, Ethernet-based industrial network
has rapidly replaced the traditional field buses. To maintain
this critical network secure, it is important to develop the real-
time network intrusion detection system (NIDS). The widely used
NIDS was developed for the general Internet environment where
the average throughput to protect attacks from the large number
of unknown network nodes is more important than the real-time
detection capability. However, in the critical industrial network,
the real-time protection is more important than the average
throughput. In this paper, a FPGA-based abnormal Ethernet
packet detector is proposed. Since it is designed for the closed
industry network, packet detection is based on the whitelist that
consists of the allowed network address and protocol numbers.
The prototype system has been implemented using the Xilinx
Zynq-7030 SoC running at 250MHz. The network header of
the Ethernet packet is compared to the 256 whitelist ruleset
within 0.032usec, which means that the malicious packets from
the abnormal network nodes are filtered out even before the
whole packets arrives. This real-time packet filtering feature is
useful in protecting highly secure network systems like the critical
industrial control systems.

Index Terms—Ethernet packet detector; network intrusion
detection system; Modbus; FPGA

I. INTRODUCTION

As the information technology plays an important role in
the smart factories, Ethernet-based industrial network rapidly
replaces the traditional field buses. Ethernet-based industrial
network is, however, easily opened to the public Internet and
has inherent security risk [1]-[3]. One of the efficient ways
to protect a network node from the unknown or suspicious
network activities is to adopt a network intrusion detection
system (NIDS) that analyzes the incoming network packets
and warns the users upon detection of a malicious network
packet or a suspicious network access from unknown network
nodes [4]. NIDS distinguishes the malicious packets among
the received network packets based on predefined rules that
define the communication pattern of the malicious packets.
Since single cyber attack toward the industrial control network
can cause a severe damage to the smart factory, the importance
of NIDS is growing.

This work was supported by the Korea Institute of Energy Technology
Evaluation and Planning (KETEP) and the Ministry of Trade, Industry &
Energy (MOTIE) of the Republic of Korea (No. 20171510102110).

Taein Kim
Dept. Info. and Comm.
Inha University
Incheon, Korea
tikim@emcl.org

Jaehyun Park
Dept. Info. and Comm.
Inha University
Incheon, Korea
jhyun@inha.ac.kr

The most widely used NIDS software include the Snort
and Suricata, that are open source-based software running on
the various operating systems [5], [6]. These NIDS software
usually run on the target network nodes that should be
protected or on a stand alone server to protect the network
subnets. While these software-based NIDS are flexible and
easily reconfigurable, they still have shortcomings: first, since
the incoming network packets are analyzed by software, it
takes relatively long time to detect an abnormal packet and
suspicious cyber attacks. This means that a real-time network
protection is hardly implemented. Second, a server or system
running a NIDS software consumes a large amount of resource
that results in the packet loss even in a low-bandwidth network
environment [7]-[10].

In order to overcome the problem of the software-based
NIDS, a hardware-based NIDS using a FPGA has been
proposed. Das et al. proposed a FPGA-based system that
detects the exceptions by implementing the Principal Com-
ponent Analysis (PCA) [11]. The proposed system provided
the anomaly detection capability rather than the signature
detection method provided by most of the IDS software. The
Feature Extraction Module (FEM) was designed to differenti-
ate the network and the PCA module was designed to detect
the anomalies. The use of the PCA reduces the size of the
data and the time during analysis. Rahmatian et al. proposed
a hardware-based NIDS to determine whether a malicious
program was running or not [12]. When a new program
tries to run on an embedded system, the finite state machine
(FSM) of the sequence recognizer examines the integrity of
the execution of system calls on a particular operating system.
The system called sequence is sent to the FPGA to verify
whether the programs are executed in order. Hutchings et
al. proposed a method for improving the performance of
string matching using an FPGA [13]. They proposed a FPGA-
based regular expression module generator that uses the Java
Hardware Description Language (JHDL) to analyze various
attributes of the Ethernet packets. Regular expressions are
generated based on the strings extracted from the Snort rules
and are used to create the FPGA circuits. The implemented
hardware compares all the incoming strings using the Non-
Deterministic Finite Automata (NFA) and significantly reduces
the CPU workload compare to the software-based IDS. Kim



and Park proposed FPGA-based pattern matching architecture
that can be used for the hardware-based NIDS [14]. Lunteren
presented a new hardware-based scheme for pattern matching
called BFPM that improves the performance of NIDS [15].
The BFSM-based pattern matching (BFPM) is based on a
new programmable state machine technology, the FSM based
on Bayesian network (BFSM). The BFPM scheme showed a
high deterministic performance regardless of the input pattern
characteristics. In addition, it showed other features such as
high storage efficiency and dynamic updates feature.

Since these previous FPGA-based NIDS were designed
for the general Internet network nodes, their performance
were analyzed to the average throughput rather than real-
time characteristics. In the general Internet applications, a
certain amount of latency in detecting the abnormal packets
are allowed because most of the applications does not have a
strict real-time constraint. However, in the industrial network
such as the smart manufacturing factory, the nuclear power
plant, and the traffic control systems, there is a very tight real-
time constraint within which cyber attack should be detected.
The other characteristics of the critical industry network is
closed network that limits the number of accessible network
nodes. Hence, with considering these closed industrial net-
work, whitelist-based NIDS can be efficiently implemented.

This paper proposes a FPGA-based packet detector or the
whitelist-based NIDS within a closed network that is widely
adopted in the critical network system including nuclear power
plant. The overall system implemented is described in Section
2. In Section 3, the implementation results are explained, and
conclusions are in Section 4.

II. PROPOSED ARCHITECTURE
A. System Structure

Figure 1 shows the internal structure of the proposed system.
There are two blocks in the SoC; a processor system (PS)
slice and a programmable logic (PL) slice. Even though the
Xilinx’s Zynq 7000 series SoC was used in the paper, any type
of SoC commercially available can be used. The hardware-
based packet detector and dual-port BRAM for the whitelist
are implemented in a PL slice. The standard AXI is used
between the PS and PL through which it is possible for the
user to read and write the ruleset storage in the PL’'s BRAM
area. The detail structure of the packet detector implemented
on a PL slice is shown in Figure 2. It consists of three blocks:
the packet parser (PP), the comparator, and ruleset store. The
packet parser breaks the incoming Ethernet packets into 7-
tuple, source and destination MAC address, IP address, port
number, and Modbus function code. The comparator compares
the parsed packets with the whitelist ruleset. The ruleset store
contains the whitelist generated by the application software
running in the processor system(PS). The details of each block
are described in the following subsections.

B. Ethernet Packet Analyzer

To parse the incoming Ethernet packets in real-time, a
Media Access Controller (MAC) with a RGMII interface was
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Fig. 1. System block diagram

implemented in the PL slice. If the standard commercial MAC
was used, the packet parsing and the comparison can be started
after whole Ethernet packet has been received. However, in this
paper, to detect the abnormal packet in real-time before the
whole Ethernet packet delivered, MAC has been implemented
in the PL slice. The implemented MAC receives data from a
PHY chip through the RGMII interface as shown in Figure
2. The received Ethernet packet is parsed into the 7-tuples
in real-time. When each 7-tuple data in the Ethernet packet
header is received, it is sent to the comparator to be compared
with the whitelist stored in the ruleset store. It means packet
parsing and comparison can be done while the remaining
network payloads are receiving. Such real-time process is
almost impossible in the software-based NIDS because the
packet parsing can be done after the whole Ethernet packet
has been received. For example, when the 48-th bit of the
Ethernet streams, the last bit of the destination MAC address,
is received, the destination MAC address is transmitted to the
comparator. The data transferred to the comparator is held until
the next Ethernet packet arrives and a new destination MAC
address is received. In the MAC buffer, the data is continuously
stored until the data of the source MAC address is received,
and when the source MAC address data is received, the data
is transmitted to the comparator. It repeats until the data from
the destination MAC address to the source port number is
received. MAC is designed to compare with the whitelist
ruleset before all the Ethernet packets arrives by comparing it
to the comparator every time the data for the tuple is received.
Because the 100 Mbps Ethernet is used, the PHY transmitted
4 bits of data with a clock of 25MHz.

C. Ruleset

Since the proposed system aims the real-time packet detec-
tion used within the critical industrial network, the prototype
system was built for the Modbus that is one of the most
widely used industrial network [16]. To analyze the Modbus
packets, the proposed system uses MAC addresses and Mod-
bus function code(F-code) in addition to a normal Snort-like
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4-tuple rule that consists of IP address and port number of NodeAddress ::= SEQUENCE {
the source and destination nodes. The MAC address is very MACAddress  OCTET STRING (SIZE(6))
useful to manage the whitelist within a local area network like IPAddress OCTET STRING (SIZE(4))
an industrial control systems. With this MAC address, more PortNumber OCTET STRING (SIZE(2))
flexible and accurate packet filtering is possible. First, a user }
may not know the IP address of the system when the IP address
is dynamically assigned by a private router or when the IP RulSet ::= SEQUENCE {
address is changed without the user’s knowledge. By utilizing DstNode NodeAddress
the MAC address, the rule can be defined even if the user SrcNode NodeAddress
Fcode OCTET STRING(SIZE (1))

does not know the IP address. Second, MAC addresses help
enhancing the packet detection in the Ethernet packet header.
The analysis time can be reduced by reducing the detection
case of the Ethernet packet payload.

The FPGA should be reconfigured when the ruleset is
modified. To overcome this inconvenience, a dual port BRAM
for storing the ruleset is configured in the PL slice. Since the
BRAM is implemented as a dual port memory, it can be read
and written by both the PS and PL. When a user enters a rule
through the interface provided by the PS, the rule is stored in
the PL’s BRAM via AXI.

Figure 3 shows the structure of the ruleset stored in the
BRAM. To store the rules for a 7-tuple, the data width of
the BRAM was set to 64 bits. The first line stores the 48
bit destination MAC address and the 16-bit destination port
number. The second row stores the source IP address and
the destination IP address. The third line stores the MAC

Fig. 3. Stored ruleset in BRAM

address and the port number of the source node. In addition to
these MAC, IP, and port number, maximum 64 bit of payload-
specific rule such as Modbus F-code, can be stored in the last
line.

D. Real-time Packet Detector

Since the whitelist rule is composed of 7-tuple, a single
comparator block consists of 7-tuple parallel comparators to
compare a whitelist rule at once. Figure 4 shows the structure
of the single tuple comparator unit. As shown in the figure, the
single tuple comparator unit has eight internal registers. During
the system initialization, eight whitelist rules are copied from a
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Fig. 4. Comparator block diagram for MAC address rule

block memory into the registers. The comparator then receives
the parsed data from the MAC and compares it to the whitelist
ruleset stored in the registers. As shown in 4, only 48 bits data
out of 64 bit data of BRAM is necessary for the MAC address
comparator. The MAC addresses stored in the eight registers
are composed of different ruleset. The comparator receives the
parsed data from the MAC and compares it to whitelist rules
stored in registers. XOR operator was used for comparison. If
a register has a whitelist ruleset, the result of XOR operator
is 0 and reflected to the flag. Because each comparator has
eight registers to store eight different whitelist, it can compare
eight whitelist rules simultaneously. If there are more than
eight whitelist rules, multiple comparator blocks can be used
in parallel. In this configuration, up to 256 rulesets can be
processed at the same time. The limitation on the number of
comparator blocks is only the size of the PL slice of the SoC.
The results from each comparator unit were OR’ed and stored
in the flag register that represents whether the received packet
is listed in the whitelist ruleset or not.

III. IMPLEMENTATION AND EXPERIMENT RESULTS

To prove the concept of the proposed architecture, a pro-
totype system has been implemented using the Xilinx Zyng-
7030 SoC running at 250MHz. An Ethernet packet detector
for comparison and detection of 7-tuples was configured using
the PL slice of the SoC. Total 256 rulesets consisting of the
7-tuple was stored in the BRAM as an experimental whitelist.

When the Ethernet packet was received, the RGMII_CTL
signal became 1 indicating a new Ethernet packet has been
arrived. Even before the whole data packet arrives, upon
receiving each tuple, the received packet is parsed immediately
and sent to the comparator for comparison. The parsed Ether-
net header is compared to the 7-tuple ruleset in the whitelist.
The 7-tuple could be compared to the whitelist ruleset stored
without a delay time while the Ethernet packets were received.
There are parallel comparators to compare the parsed 7-tuples
with the multiple whitelist in parallel. A single whitelist ruleset
is placed in each register in the same order. If the result of
OR’ing of the comparator 0, it means the input Ethernet data is

already included in the whitelist ruleset. If the output value is
1, it means the received packet is not yet listed in the whitelist.

Figure 5 shows the timing chart when a normal packet of
which header is listed in the whitelist arrives. MATCH signal
means that the incoming packet is listed in the whitelist. The
RGMII interface was used between the PHY and MAC, which
enables 4 bit data can be delivered at each RGMII clock cycle.
Since the Ethernet packet header is 384 bits long and the
incoming packet is parsed and compared in real-time upon
receiving, the elapsed time to determine whether it is matched
or not is only 3.67us. If the arrived packet is confirmed in
the whitelist, the RCV_INT signal to the CPU (PS slice in
Zynq SoC) indicates a normal Ethernet packet is received.
Figure 5-(a) and Figure 5-(b) shows the timing chart of the
shortest message and MTU(Maximum transfer unit) payload,
respectively.

Figure 6 shows the timing chart when an abnormal packet of
which header is not listed in the whitelist arrives. Figure 6-(a)
and Figure 6-(b) shows the destination MAC and source port
number is not listed in the whitelist, respectively. Considering
the destination MAC address is 96 bits, it took only 12
RGMII clock, 0.96us, to check the destination MAC address.
In the experiment, it took 1.11us. Even in the second case,
destination port number, it took only 3.69us to determine it
is not in the list, that is 2.1us before the whole packet of the
shortest message(ICMP) received. When the incoming packet
is determined as an abnormal packet, the RCV_INT signal
remains false in order that CPU may ignore the incoming
packet. This means packet filtering is processed in real-time
without any software burden.

The internal clock of the PL operates at 250MHz. Since
there are 32 comparators with the eight rules, 8§ system
clocks, 0.032sec, are required to compare the 256 rules. This
comparison makes it possible to complete the comparison with
the whitelist ruleset for 7-tuple before the whole Ethernet
packets are received. The implementation result shows that
3.14% of LUTs’, 2.15% of Flip-Flops’, and 2.83% of block
RAM of the Zynq 7030 were used.

IV. CONCLUSION

In this paper, a FPGA-based Ethernet packet detector for
a critical industrial network was proposed. The proposed
system consists of a packet parser, a comparator, and an
intrusion detection ruleset storage that are implemented in a
programmable logic (PL) slice of the SoC. Since it is designed
a closed industrial network, packet detection is based on the
whitelist that contains allowed network node and protocol
pairs. The whitelist ruleset used in this paper consists of 7-
tuples; MAC address, IP address, TCP/UDP port number of
the source and destination network nodes, and Modbus F-code
that is an extended version of widely used Snort ruleset. The
prototype system was implemented using the Xilinx Zyng-
7030 SoC running at 250MHz. The implemented prototype
used 3.14% of LUTs’, 2.15% of Flip-Flops’, and 2.83% of
block RAM in the Zynq-7030. The Ethernet packet headers are
compared to the 256 whitelist ruleset within 0.032us on the
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Fig. 5. Timing of the normal packet case

implemented prototype system. This means that the malicious
packets from the abnormal network nodes can be detected
even before the whole packet arrives. This real-time detection
performance can be achieved without consuming much CPU
resource. It also showed the very accurate packet filtering
capability without even single packet loss that might found
in the software-based IDS.
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